Air Force Domain Analysis JSIMS Domain Engineering Teams Update

USAF ESC/AVM 8 FEB 98

For Official Use Only

Overview

- Background
- Conceptual Models (Structure and Syntax)
- Air Force Domain Analysis
- Examples of AF Domain Models in progress for NASM
- The RDD-100 Systems Engineering Tool

Background

- Conceptual Models are the first abstraction of the real world:
 - they MUST facilitate communication between Subject Matter Experts (SMEs) and Simulation Developers
 - they MUST be simulation and simulation method independent (i.e. they must support the development of either process oriented or object oriented simulations)

Background

- Combat Models and Simulations are a representation of highly coupled, complex processes that are performed by multiple, heterogeneous (yet interacting) systems
- The basic or core processes in combat are relatively stable
- The systems that make combat processes a reality are often interchangeable and constantly changing

Conceptual Models of combat should focus on the combat processes -- letting these drive the object classification and object models

The Modeling Process

- The Team
 - SME
 - Systems Engineer
- Tools
 - Common structure (CMODSIM)
 - Common semantics
 - System Engineering tool(s)
- References
 - SME's knowledge
 - Doctrinal sources
- Validation
 - Workshops
 - Visits
 - WWW access for reviewers

Conceptual Model of Simulation

CMODSIM

Describes behavior during air combat and combat support operations:

- Command and Control (Cognitive Processes)
 - National Strategic
 - Theater Strategic
 - Theater Operational
 - Tactical
 - System
- Execution (Physical Processes)
 - Communicate
 - Sense
 - Move
 - Engage

Common Structure and Semantics

Conceptual Model of Command and Control (CMODC2)

Monitor the Situation

Mission/ Task Analysis Course of Action Development

Supervise & Synchronize

- Common semantics provides systematic use of verbs
- CMODC2 provides common structure for information integration in Knowledge Acquisition process
 - Brings different Subject Matter Experts (SMEs) with different experiences back to common reference point

CMODSIM

Incrementally fill out the mission space until all AFM 1-1 missions are represented, including OOTW

Illustrative Common Semantics for AF Domain Analysis Command and Control

- Gather Information
 - -- Gather
 - -- Classify
 - -- Highlight
 - -- Find
 - -- Combine
 - -- Merge
 - -- Parse
 - -- Sort
 - -- Check
 - -- Receive
 - -- File
 - -- Catalogue

- Review/Assess Requirements and Resources
 - Identify
 - Determine
 - Restate
 - Prioritize
 - Estimate
 - Analyze
 - Review
 - Update
 - Prepare

Illustrative Common Semantics for AF Domain Analysis Command and Control

- Prepare Alternative Plans
 - Develop
 - Recommend
 - Process
 - Array
 - Detail
 - Compare
 - Examine
 - Contrast
 - Investigate
 - Assess
 - Integrate
 - Plan
 - Match
 - Calculate

- Direct Operations
- Choose
- Command
- Evaluate
- Issue
- Implement
- Direct
- Redirect
- Allocate
- Apportion
- Assign

- Appoint
- Control
- Decide
- Secure
- Order
- Give
- Coordinate
- Approve
- Select
- Acquire
- Obtain

Illustrative Common Semantics for AF Domain Analysis Command and Control (Multiuse)

- -- Screen
- -- Integrate
- -- Initiate
- -- Determine
- -- Restate
- -- Determine
- -- Identify
- -- Study
- -- Update

Illustrative Common Semantics for AF Domain Analysis Dynamics

- Execute Combat
 - Sense
 - --
 - --
 - Move
 - _.
 - --
 - Engage
 - --
 - --
 - Communicate
 - --
 - --

Conceptual Models

Air Force Domain Model Example (draft)

The Command Joint Forces CMODSIM and ATO generation process

See attached postscript files for these behavior diagrams:

CJF_1.ps (Perform Military Operations--Level 0 view)

CJF_2.ps (Command and Control Military Forces--Level 1 view)

CJF_3.ps (Operational Command and Control for Theater Joint Forces--Level 2)

CJF_4.ps (COA Development--Operational--Level 3)

Air Force Domain Model Example (draft)

The generic mission take-off to landing process (template)

See attached postscript files for these behavior diagrams:

MSN_1.ps (Generic Air Mission: Takeoff to Landing--Level 0 view)

MSN_2.ps (Execute Air Operations--Level 1 view)

MSN_3.ps (Perform Air Mission--Level 2)

Air Force Domain Model Example (draft)

Tactical Airlift Mission

See attached postscript files for these behavior diagrams:

TALFT_1.ps (Provide Theater Airlift--Level 0 view)

TALFT_2.ps (Airlift Execution--Level 1 view)

TALFT_3.ps (Tactical Command and Control--Level 2)

RDD-100's Current Object View

- Support for Object Types is provided in multiple views
 - Object editing and browsing
 - Classification view
 - Composition view
 - Association view
- The Integrated System Model is developed in different perspectives, including ...
 - Real World Object perspective, specifying inheritance and processes
 - Behavior Model perspective, specifying external, observable behavior of processes
- Object are then used in different Integrated System Models
- RDD-100 handles the management of originating and derived requirements

Ascent Logic's Plan for RDD-100's Object View

- An Object-Oriented System Engineering methodology that defines the system (or process) as a collection of collaborating (interacting) objects that achieve a common purpose
- Uses "Best of Class" OO representation:
 - Rumbaugh's Object Structure notation
 - Jacobson's Use Case representation to behavior
 - Odell's representation for information engineering
- Commitment to support the leading industry methodology as the market demands it
- Currently found to be extremely compatible with the Unified Method
- Fundamentally based on OO database management; capable of evolution consistent with this paradigm

Examples of Object Classes in the Unified Method

Derived from the Behavior Diagrams in the examples shown

Generic Air Mission Object Inheritance Diagram

Added Value of Behavioral Diagrams

- Enhanced user manuals
- Configuration management
- Model/Simulation V&V
- Simulation migration management

Conclusions

- CMODC2 and common semantics effort at GMU well underway
 - starting point for CMMS Technical Framework effort on syntax and semantics at DMSO
- NASM Air Force Domain Analysis
 - developed template for mission execution
 - CMODSIM for C2 processes from NCA to tactical units with emphasis on JFACC processes
 - Tactical Airlift CMODSIM in validation
- CMODSIM robust
 - not Service or force type specific
 - using for Army and AF Domain Analysis

Conclusions

Validation process starting

- Systems Engineering Notebooks (SENs) available
 - works in progress
 - frequent updates
- WWW distribution of Domain Models
- validation workshops
- validation visits with warfighters and simulation development community